
Adaptive Schema Databases ∗

William Spothb, Bahareh Sadat Arabi, Eric S. Chano, Dieter Gawlicko,
Adel Ghoneimyo, Boris Glavici, Beda Hammerschmidto, Oliver Kennedyb,

Seokki Leei, Zhen Hua Liuo, Xing Niui, Ying Yangb

b: University at Buffalo i: Illinois Inst. Tech. o: Oracle
{wmspoth|okennedy|yyang25}@buffalo.edu

{barab|slee195|xniu7}@hawk.iit.edu bglavic@iit.edu
{eric.s.chan|dieter.gawlick|adel.ghoneimy|beda.hammerschmidt|zhen.liu}@oracle.com

ABSTRACT
The rigid schemas of classical relational databases help users
in specifying queries and inform the storage organization of
data. However, the advantages of schemas come at a high
upfront cost through schema and ETL process design. In
this work, we propose a new paradigm where the database
system takes a more active role in schema development and
data integration. We refer to this approach as adaptive
schema databases (ASDs). An ASD ingests semi-structured
or unstructured data directly using a pluggable combina-
tion of extraction and data integration techniques. Over
time it discovers and adapts schemas for the ingested data
using information provided by data integration and infor-
mation extraction techniques, as well as from queries and
user-feedback. In contrast to relational databases, ASDs
maintain multiple schema workspaces that represent indi-
vidualized views over the data, which are fine-tuned to the
needs of a particular user or group of users. A novel as-
pect of ASDs is that probabilistic database techniques are
used to encode ambiguity in automatically generated data
extraction workflows and in generated schemas. ASDs can
provide users with context-dependent feedback on the qual-
ity of a schema, both in terms of its ability to satisfy a user’s
queries, and the quality of the resulting answers. We outline
our vision for ASDs, and present a proof of concept imple-
mentation as part of the Mimir probabilistic data curation
system.

1. INTRODUCTION
Classical relational systems rely on schema-on-load, re-

quiring analysts to design a schema upfront before posing
any queries. The schema of a relational database serves
both a navigational purpose (it exposes the structure of
data for querying) as well as an organizational purpose (it
informs storage layout of data). If raw data is available

∗Authors Listed in Alphabetical Order

This article is published under a Creative Commons Attribution Li-
cense(http://creativecommons.org/licenses/by/3.0/), which permits distri-
bution and reproduction in any medium as well as allowing derivative
works, provided that you attribute the original work to the author(s) and
CIDR 2017. 8th Biennial Conference on Innovative Data Systems Research
(CIDR ’17). January 8-11, 2017, Chaminade, California, USA.

in unstructured or semi-structured form, then an ETL (i.e.,
Extract, Transform, and Load) process needs to be designed
to translate the input data into relational form. Thus, clas-
sical relational systems require a lot of upfront investment.
This makes them unattractive when upfront costs cannot
be amortized, such as in workloads with rapidly evolving
data or where individual elements of a schema are queried
infrequently. Furthermore, in settings like data exploration,
schema design simply takes too long to be practical.

Schema-on-query is an alternative approach popularized
by NoSQL and Big Data systems that avoids the upfront
investment in schema design by performing data extraction
and integration at query-time. Using this approach to query
semi-structured and unstructured data, we have to perform
data integration tasks such as natural language processing
(NLP), entity resolution, and schema matching on a per-
query basis. Although it allows data to be queried imme-
diately, this approach sacrifices the navigational and perfor-
mance benefits of a schema. Furthermore, schema-on-query
incentivizes task-specific curation efforts, leading to a pro-
liferation of individualized lower-quality copies of data and
to reduced productivity.

One significant benefit of schema-on-query is that queries
often only access a subset of all available data. Thus, to
answer a specific query, it may be sufficient to limit inte-
gration and extraction to only relevant parts of the data.
Furthermore, there may be multiple “correct” relational rep-
resentations of semi-structured data and what constitutes a
correct schema may be highly application dependent. This
implies that imposing a single flat relational schema will lead
to schemas that are the lowest common denominator of the
entire workload and not well-suited for any of the workload’s
queries. Consider a dataset with tweets and re-tweets. Some
queries over a tweet relation may want to consider re-tweets
as tweets while others may prefer to ignore them.

In this work, we propose adaptive schema databases
(ASDs), a new paradigm that addresses the shortcomings
of both the classical relational and the Big Data approaches
mentioned above. ASDs enjoy the navigational and organi-
zational benefits of a schema without incurring the upfront
investment in schema and ETL process development. This
is achieved by automating schema inference, information ex-
traction, and integration to reduce the load on the user.
Furthermore, instead of enforcing one global schema, ASDs
build and adapt idiosyncratic schemas that are specialized
to users’ needs.

We propose the probabilistic framework shown in Fig-
ure 1 as a reference architecture for ASDs. When unstruc-

Unstructured Data Semi-structed Data (e.g., JSON)

Extraction workflow

Schema
Workspace

Schema Matching

Extraction workflow Extraction workflow

Extraction Schema Candidates

Schema
Workspace

Schema
Workspace

Schema
Workspace

Queries + Feedback

Figure 1: Overview of an ASD system

tured or semi-structured data are loaded into an ASD, this
framework applies a sequence of data extraction and in-
tegration components that we refer to as an extraction
workflow to compute possible relational schemas for this
data. Any existing techniques for schema extraction or in-
formation integration can be used as long as they can ex-
pose ambiguity in a probabilistic form. For example, an
entity resolution algorithm might identify two possible in-
stances representing the same entity. Classically, the algo-
rithm would include heuristics that resolve this uncertainty
and allow it to produce a single deterministic output. In con-
trast, our approach requires that extraction workflow stages
produce non-deterministic, probabilistic outputs instead of
using heuristics. The final result of such an extraction
workflow is a set of candidate schemas and a proba-
bility distribution describing the likelihood of each of these
schemas. In ASDs, users create schema workspaces that
represent individual views over the schema candidates cre-
ated by the extraction workflow. The schema of a workspace
is created incrementally based on queries asked by a user
of the workspace. Outputs from the extraction workflow
are dynamically imported into the workspace as they are
used, or users may suggest new relations and attributes not
readily available to the database. In the latter case, the
ASD will apply schema matching and other data integration
methods to determine how the new schema elements relate
to the elements in the candidate schemas, and attempt to
synthesize new relations or attributes to match. Similar to
extraction workflows, the result of this step is probabilis-
tic. Based on these probabilities and feedback provided by
users through queries, ASDs can incrementally modify the
extraction workflow and schema workspaces to correct er-
rors, to improve their quality, to adapt to changing require-
ments, and to evolve schemas based on updates to input
datasets. The use of feedback is made possible based on
our previous work on probabilistic curation operators [35]
and provenance [2]. By modelling schemas as views over
a non-relational input dataset, we decouple data represen-
tation from content. Thus, we gain flexibility in storage
organization — for a given schema we may choose not to
materialize anything, we may fully materialize the schema,
or materialize selectively based on access patterns.
Concretely, this paper makes the following contributions:

• We introduce our vision of ASDs, which enable access
to unstructured and semi-structured data through per-
sonalized relational schemas.
• We show how ASDs leverage information extraction

and data integration to automatically infer and adapt
schemas based on evidence provided by these compo-
nents, by queries, and through user feedback.
• We show how ASDs enable adaptive task-specific “per-

sonalized schemas” through schema workspaces which

are probabilistic relational views over semistructured
or unstructured input datasets.
• We illustrate how ASDs communicate potential sources

of error and low-quality data, and how this communi-
cation enables analysts to provide feedback.
• We present a proof of concept implementation of ASDs

based on the Mimir [29] data curation system.
• We demonstrate through experiments that the instru-

mentation required to embed information extraction
into an ASD has minimal overhead.

2. EXTRACTION AND DISCOVERY
An ASD allows users to pose relational queries over the

content of semi-structured and unstructured datasets. We
call the steps taken to transform an input dataset into re-
lational form an extraction workflow. For example, one
possible extraction workflow is to first employ natural lan-
guage processing (NLP) to extract semi-structured data (e.g.,
RDF triples) from an unstructured input, and then shred
the semi-structured data into a relational form. The user
can then ask queries against the resultant relational dataset.
Such a workflow frequently relies on heuristics to create
seemingly deterministic outputs, obscuring the possibility
that the heuristics may choose incorrectly. In an ASD, one
or more modular information extraction components instead
produce a set of possible ways to shred the raw data with
associated probabilities. This is achieved by exposing ambi-
guity arising in the components of an extraction workflow.
Any NLP, information retrieval, and data integration algo-
rithm may be used as an information extraction component,
as long as the ambiguity in its heuristic choices can be ex-
posed. The set of schema candidates are then used to seed
the development of schemas individualized for a particular
purpose and/or user. The ASD’s goal is to figure out which
of these candidates is the correct one for the analyst’s cur-
rent requirements, to communicate any potential sources of
error, and to adapt itself as those requirements change.

Extraction Schema Candidates. When a collection of
unstructured or semi-structured datasets D is loaded into
an ASD, then information extraction and integration tech-
niques are automatically applied to extract relational con-
tent and compute candidate schemas for the extracted in-
formation. The choice of techniques is based on the input
data type (JSON, CSV, natural language text, etc. . .). We
associate with this data a schema candidate set Cext =
(Sext, Pext) where Sext is a set of candidate schemas and
Pext is a probability distribution over these schemas. We
use Smax referred to as the best guess schema to denote
arg maxS∈Sext

(P (S)), i.e., the most likely schema from the
set of candidate schemas. Similar data models have been
studied extensively in probabilistic databases [16], allowing
us to adapt existing work on probabilistic query process-
ing [31], while still supporting a variety of techniques for in-
formation extraction [12], natural language processing [13],
data integration [14,15,21], and more.

Example 1. As a running example throughout the paper,
consider a JSON document (a fragment is shown below) that
stores a college’s enrollment. Assume that for every grad-
uate student we store name and degree, but only for some
students there is a record of the number of credits achieved
so far. For undergraduates we only store a name, although
several undergraduates were accidentally stored with a de-

Student

Name
Alice
Bob
Carol
Dave

(a) P = 0.19

Student

Name Deg
Alice PhD
Bob MS
Carol (null)
Dave U

(b) P = 0.27

Undergrad

Name
Carol
Dave

Grad

Name
Alice
Bob

(c) P = 0.22

Undergrad

Name Deg
Carol (null)
Dave U

Grad

Name Deg Credits
Alice PhD 10
Bob MS (null)

(d) P = 0.32

Figure 2: Extracted Schema Candidate Set and Data

gree. A semi-structured to relational mapper may extract
schema candidates as shown in Figure 2.

{"grad":{"students":[
{name:"Alice",deg:"PhD",credits:"10"},
{name:"Bob",deg:"MS"}, ...]},

"undergrad":{"students":[
{name:"Carol"},{name:"Dave",deg:"U"}, ...]}}

Querying Extracted Data. We would like to expose to
users an initial schema that allows D to be queried (i.e.,
the best guess schema Smax), while at the same time ac-
knowledging that this schema may be inappropriate for the
analyst, incorrect for her current task, or simply outright
wrong. Manifestations of extraction errors appear in three
forms: (1) A query incompatible with Smax, (2) An up-
date with data that violates Smax, or (3) An extraction er-
ror resulting in the wrong data being presented to the user.
The first two errors are overt and, thus easy to detect au-
tomatically. In both cases, the primary challenge is to help
the user to determine whether the operation was correct,
and if necessary, to repair the schema accordingly. Here,
the distribution Pext serves as a metric for schema sugges-
tions. Given a query (resp., update or insert) Q, the goal
is to compute arg maxS∈Sext∧S�Q(P (S)), where the S � Q
denotes compatibility between schema and query, i.e., the
schema contains the relations and attributes postulated by
the query. While Smax has the highest probability of all
schema candidates in Sext, that does not imply that it has
the highest probability with respect to the schema elements
mentioned in the query. Thus, we use Smax as a generic best
guess to enable the user to express queries at first, but then
adapt the best schema over time. Note that the personalized
schemas we introduce in the next section even allow queries
to postulate new relations and attributes.

Detecting extraction errors is harder and typically only
possible once issues with the returned query result are dis-
covered. Rather, such errors are most often detected as a
result of inconsistencies observed while the analyst explores
her data. Thus, the goal of an ASD is to make the process
of detecting and repairing extraction errors as seamless as
possible. Our approach is based on pay-as-you-go or on-
demand approaches to curation [21,29,34], and is the focus
of Sections 4 and 6 below.

3. ADAPTIVE, PERSONALIZED SCHEMAS
An ASD maintains a set of schema workspaces W =
{W1, . . . ,Wn}. Each workspace Wi has an associated mapped
context Ci = (Si,Mi, Pi) where Si is a schema, Mi is a set
of possible schema matchings [4], each between the elements
of Si and one S ∈ Sext, and Pi assigns probabilities to these
matches. In the future we will lift the restriction to schema

matches and allow the relationship between the extracted
schema and the schema of a workspace to be more complex
than that (e.g., expressed as a schema mapping [15]). Users
may maintain their own personal schema workspace or share
workspaces within a group of users that have common in-
terests (e.g., a business analyst workspace for the sales data
of a company). We plan to provide version control style
features for the schemas of workspaces including access to
data through past schema versions and importing of schema
elements from one workspace into another. Recent work on
schema evolution [9] and schema versioning demonstrates
that it is possible to maintain multiple versions of schemas
in parallel where data is only stored according to one of these
schemas. Specifically, we plan to extend our own work on
flexible versioning of data [30] and flexible schema extensions
for SQL [24].

Importing Schema Elements. Initially, the schema of
a workspace is created empty. When posing a query over
an extracted dataset, the user can refer to elements from
schema Smax, schema Si, or new relations and attributes
that do not occur in either. References of the first two types
are resolved by applying the extraction workflow to com-
pute the instances for these schema elements (and poten-
tially mapping the data based on the matches in Mi). If
a query references schema elements from Smax, then these
schema elements are added to the current workspace schema
plus one-to-one matches with probability 1 between these el-
ements in Smax and Si are added to the matching Mi.

A query may also remain agnostic to the specific schema
elements it requires, and instead declaratively provide query
goals in terms of higher-order logical primitives. That is, the
user postulates the existence of schema elements (which is
expressible in second-order logic) and part of their structure
(e.g., attributes that are referenced) without having to fully
qualify them. This constrains the schema workspace, but
still allows the workspace to adapt and evolve over time. A
concrete example of this idea can be found in the flexible
schema data extensions for SQL [24] (FSD-SQL). FSD-SQL
allows query authors to remain agnostic to the exact phys-
ical structure of inter-attribute relationships, automatically
adapting the query structure as needed.

Example 2. Consider the following FSD-SQL query, which
returns all students in the PhD program:

SELECT name FROM Grad
WHERE json_exists(deg == ’PhD’)

The data initially shows that each student has only one de-
gree — The best schema is one in which there is a 1-to-1
mapping between student and degree and deg is an element
of the Grad relation. Thus, the above query is equivalent to
the classical SQL query:

SELECT name FROM Grad WHERE deg = ’PhD’

However, let’s say that the data also contains the following
student, registered for both programs.

{ name: "Eve", deg: ["MS", "PhD"] }

With this new data, it may be appropriate to represent the
degree field by a many-to-one relationship, and the equivalent
query becomes a more complex primary-key to foreign-key
join:

SELECT g.name FROM Grad g WHERE EXISTS (

SELECT * FROM GradDeg d
WHERE g.id = d.id AND d.deg = ’PhD’)

A language construct like json_exists remains agnostic to
which underlying representation is used, creating a query
that is more resilient to schema evolution and supporting
a broader range of possible schemas.

Probabilistic Semantics of ASD Queries. Note that
ASD queries are inherently probabilistic, as the result varies
depending on the distribution of possible extractions. How-
ever, we do not have to overwhelm the user with full prob-
abilistic query semantics. Instead, we apply the approach
from [29,35] to return a deterministic best guess result based
on Si and expose uncertainty through user interface cues [23]
and through human-readable explanations generated on-demand.

Example 3. Continuing with our running example, as-
sume a user operating in workspace W1 would like to retrieve
all the names of students based on the enrollment JSON doc-
ument. One option the user can take is to query the relations
exposed by the best guess schema Smax. For instance, one
way to express this query over the schema in Figure 2 is:

SELECT name FROM Undergrad UNION
SELECT name FROM Grad

To process this query, the ASD would run the extraction
workflow to create the relational content of the Undergrad
and Grad relations (it would be sufficient to create the pro-
jections of these relations on name only). The query is then
evaluated over these extracted data. As a side-effect, by ac-
cessing these schema elements, the user declares interest in
them and they are added to the schema workspace. Note that
only accessed attributes are added to the workspace. If the
workspace’s schema was empty before, the resulting schema
would be S1 = {Undergrad(name),Grad(name)}. Addition-
ally, in M1 these elements are matched with their counter-
part in Smax. If afterwards the user retrieves the degree of
a graduate student then the Grad relation’s schema would
become (name, deg).

Declaring New Schema Elements. So far we have only
discussed the case where a query refers to existing schema el-
ements (either in the user schema or the extracted schema).
If a query uses schema elements that are so far unknown,
then this is interpreted as a request by the user to add these
schema elements to the schema workspace. It is the re-
sponsibility of the ASD to determine how schema elements
in the extracted schema are related to these new elements.
Any existing schema matching (and mapping discovery) ap-
proach could be used for this purpose. For instance, we could
complement schema matching with schema mapping dis-
covery [7, 33] to establish more expressive relationships be-
tween schema elements. Based on such matches we can then
rewrite the user’s query to access only relations from the ex-
tracted schema using query rewriting with views (a common
technique from virtual data integration [17]) or materialize
its content using data exchange techniques [15]. Again we
take a probabilistic view by storing all possible matches with
associated probabilities and choosing the matches with the
highest probability for the given query.

Example 4. Assume that a user would like to find names
of students without having to figure out which relations in
Smax store student information. A user may ask:

SELECT name FROM Student

Since relation Student occurs in neither S1 nor Smax, the
ASD would run a schema matcher to determine which ele-
ments from Smax match with Student and its attribute name,
for instance by probabilistically combining the name attribute
of Grad and Undergrad as in the query from Example 3.

In the example above, three Student(name) relations could
reasonably be extracted from the dataset: One with just
graduate students, one with just undergraduates, and one
with both. Although it may be possible to heuristically se-
lect one of the available extraction options, it is virtually im-
possible for a single heuristic to cover all use cases. Instead,
ASDs use heuristics only as a starting point for schema
definitions. An ASD decouples its information extraction
heuristics from the space of possible extractions that could
be emitted. In the next section, we present how these uncer-
tain heuristic choices can be validated or corrected as needed
in a pay-as-you-go manner [21, 29]. Note that we can use
any existing schema matching algorithm to create schema
matching Mi as long as it can be modified to expose prob-
abilities. As we have demonstrated in previous work this
assumption is reasonable — Mimir [29] already supports a
simple probabilistic schema matching operator.

4. EXPLANATIONS AND FEEDBACK
Allowing multiple schemas to co-exist simultaneously opens

up opportunities for ambiguity to enter into an analyst’s in-
teraction with the database. To minimize confusion, it is
critical that the analyst be given insight into how the ASD
is presently interpreting the data.

Our approach to communicating the ASD’s decisions lever-
ages our previous work on: (1) explaining results of proba-
bilistic queries and data curation operators in Mimir [23,29,
35], and (2) provenance frameworks for database queries [2,
30]. We discuss the details of these systems along with our
proof of concept implementation in Section 6. An ASD must
be able to: (1) Warn the analyst when ambiguity could im-
pact her interaction, (2) Explain the ambiguity, (3) Evaluate
the magnitude of the ambiguity’s potential impact, and (4)
Assist the analyst in resolving the ambiguity. In this section,
we explore how an ASD can achieve each of these goals in
the context of three forms of interaction between the ASD
and the outside world: Schema, Data, and Update.

Schema Interactions. Schema interactions are those that
take place between the analyst and the ASD as she composes
queries and explores the relations available in her present
workspace. Recall that referencing a relation that does not
exist in the workspace and extraction schema Smax does not
necessarily constitute a problem since this triggers the ASD
to add this relation to the workspace and figure out which
relations in Sext it could be matched with. However, it may
be the case that no feasible match can be found. This either
means that the user is asking for data that is simply not
present in the dataset D or that errors in the extraction
workflow or matching caused the ASD to miss the correct
match. To explain the failure, we may provide the user with
a summary of why matching with Sext failed. For example,
there are no relations with similar names in Sext.

Data Interactions. Data interactions happen when the
ASD produces query results. Here, ambiguity can typically
not be detected by static analysis and is often hidden behind

multiple layers of aggregation and projection. For example,
the query in Example 4 can have three distinct responses,
depending on which relations from the extraction schema
are matched against Student relation in the workspace that
the analyst is currently using. At this level un-intrusive in-
terface cues [23] are critical for alerting the analyst to the
possibility that the results she is seeing may not be what
she had in mind. The Mimir system uses a form of at-
tribute granularity provenance [29, 35] to track the effects
of sources of ambiguity on the output of queries. In addi-
tion to flagging potentially ambiguous query result cells and
rows (e.g., attributes computed based on a schema match
that is uncertain), Mimir allows users to explore the effects
of ambiguity through both human-readable explanations of
their causes and statistical precision measures like standard
deviation and confidence scores. Linking results to sources
of ambiguity also makes it easier for the analyst to provide
feedback that resolves the ambiguity. In Section 6 we show
how we leverage Mimir to streamline data interactions in
our prototype ASD.

Update Interactions. Finally, update interactions take
place when the ASD receives new data, or changes to exist-
ing data. In comparison to the other two cases, there may
not be an analyst directly involved in an update interaction
like a nightly bulk data import. Thus, the ASD must be able
to communicate the ambiguity arising from update interac-
tions to analysts indirectly. The main problem with updates
is that the extraction schema candidates Sext and its proba-
bility distribution Pext may get out of sync with the data it
is describing. For example, when extracting JSON schemas,
Oracle’s DataGuides [25] transparently upgrade the type of
a primitive-valued object to a singleton array if necessary
for compatibility. Workspaces that have already imported
mappings to the object expect it to be a primitive value.

However, rather than blocking an insertion or update which
does not conform with the extraction schema outright, the
ASD will represent schema mismatches as missing values
when data is accessed through the out of sync schema. Al-
ternatively, we can attempt to resolve data errors with a
probabilistic repair. For example, an array of primitive val-
ues can be coerced into a primitive value by the probabilistic
repair-key operation [1], allowing us to once again leverage
probabilistic data curation systems like Mimir for explana-
tions and feedback. However, because of the possibility that
the schema is incorrect, feedback on these curation steps in-
cludes an additional two options for the analyst. In addition
to repairing the potential data error, the analyst can choose
to upgrade her workspace’s schema to match the changes,
or may choose to checkpoint her workspace and ignore new
updates.

The ASD can also adjust the information extractor to
adapt the schema candidate set Cext and its probability dis-
tribution. However, this change could invalidate the matches
of an existing workspace. For instance, consider an extracted
schema that contains a relation Student(name,credits). If
subsequent updates to the dataset insert many students with-
out credits, then eventually the relation Student(name,credits)
should be replaced with Student(name). If a workspace schema
contains an attribute matched to Student.credits, then this
attribute is no longer matched with any attribute from the
extraction schema. When explaining missing values to the
user, we plan to highlight their cause, whether they are the
result of data that can not be cast to the current schema, or

of an orphaned workspace attribute (it is no longer matched
to any attribute in Cext).
User Feedback. We envision letting the user provide var-
ious kind of feedback about errors in query results such
as marking sets of invalid attribute values and unexpected
rows. Based on provenance we can then back-propagate
this information to interpret these as feedback on matches
and extraction workflow decisions. To determine a precise
method for determining the best fixes based on such infor-
mation is an interesting avenue for future work. Continu-
ing with our running example, assume that the user when
postulating the existence of a Student relation was only in-
terested in the names of graduate students. If the ASD has
matched the student relation against both Undergrad and
Grad, then the result will also include undergraduates. To
indicate that there is a problem, the user can mark some of
the undergraduate names in the result as erroneous. The
ASD can back-propagate these markers to the inputs using
provenance (e.g., see [6, 8]). In the example, these back-
propagated markers all annotate data that is in the result
based on the match between Student and Undergrad. Thus,
they provide evidence against this schema match and the
ASD may decide to remove the match.

5. ADAPTIVE ORGANIZATION
A classical RDBMS determines the physical organization

of data based on its schema. This leads to excellent query
performance and good storage utilization, because the schema
information can be exploited to choose a beneficial physical
design. For instance, using this approach it is not neces-
sary to store schema information with each row, since all
rows share the same structure and may be interpreted in
the same way. However, this approach has the disadvantage
that even small schema changes may necessitate physical
reorganization of large amounts of data. Conversely, stor-
ing data in its native semi-structured or unstructured form
does not enforce a fixed schema for the data and, thus, no
physical reorganization is needed when the schema evolves.
However, this flexibility comes at the cost of reduced query
performance as the raw data needs to be decoded and trans-
formed at runtime, and at the cost of higher storage require-
ments.

5.1 Materializing Personalized Schemas
From a user’s perspective, data in a personalized schema

is relational, i.e., SQL queries are treated as queries that ac-
cess relational views. Under the hood, when a query accesses
unstructured or semi-structured data, the data is transpar-
ently transformed into relational form, e.g., through an SQL-
standard flatting operation for semi-structured data such as
JSON_TABLE(). Thus, ASDs effectively decouple the data for-
mat used for storage (the unstructured or semi-structured
input datasets) from the data format used for querying (in
the format defined by a schema workspace). Technically,
it would be sufficient to just store the input datasets and
generate data according to a workspace schema at query
time. This corresponds to the second method mentioned
above. Alternatively, we could materialize data according to
a workspace schema eagerly after each change to the schema.
This is the approach taken by traditional data warehousing.
In ASDs any (partial) relational workspace schema is essen-
tially a view over the semi- or unstructured input datasets.

Thus, we have the freedom to materialize such a view just-in-
time when it is requested or drop it if it is no longer deemed
beneficial. Existing adaptive physical design and caching
techniques [5,11,18,27,36] can be utilized to make such de-
cisions. For example, these “views” can be materialized as
in-memory data structures [25] or be stored as disk-resident
materialized views and indexes as illustrated in [24].

Having this flexibility enables an ASD to adapt to us-
age patterns. During periods of frequent data evolution,
materialized schemas require additional efforts to be kept
up to date with the evolving schema and data. If this ef-
fort exceeds the performance benefit for queries, then these
structures should be dropped. In ASDs this is not a prob-
lem, since these structures can be re-created from the input
datasets at any point in time. In other words, in ASDs, the
schema-based storage approach is merely an optional cache
that we can fully control.

5.2 Shared Materializations
Since ASDs will host multiple schema snapshots from mul-

tiple workspaces over the same raw input data, it is advanta-
geous to extensively share materializations across schemas.
The schemas discovered by ASDs can be used to guide per-
formance tuning by caching content of relations that are
used frequently and are stable (their schema and content
has not been modified recently). In this regard, it will be
important to determine differences among schema snapshots
from the same and from different workspaces to identify op-
portunities for sharing and to update cached data through
incremental materialized view maintenance techniques. Ad-
ditionally, we can leverage techniques from revision control
systems, such as, copy-on-write, storing change deltas, and
materializing at large change boundaries, to organize the
shared physical cache for schema snapshots.

Furthermore, we can cache the outputs of data extraction
or projections over this output to benefit multiple workspace
schema elements. This leads to interesting optimization
problems because of the sharing of elements, a problem anal-
ogous to the view selection problem [27]. The difference to
other automated approaches for tuning physical design is
that the sharing of such elements by workspace schemas is
encoded in their matchings, which simplifies the identifica-
tion of sharing opportunities. It remains to be seen whether
this information can be exploited to devise caching strategies
that are fine tuned for ASDs.

6. PROOF OF CONCEPT
We now outline a proof of concept ASD implementation,

leveraging the Mimir [29, 34] system for its provenance and
feedback harvesting capabilities. For this preliminary im-
plementation, we chose to implement a probabilistic version
of the normalizing relational data extractor for JSON data
recently proposed by DiScala and Abadi [12]. This extractor
uses heuristics based on functional dependencies (FDs) be-
tween the objects’ attributes to create a narrow, normalized
relational schema for the input data. We use this extractor
as a proof of concept extraction workflow in our prototype.

6.1 Deterministic Extraction
The DiScala extractor [12] runs on collections of JSON

objects with a shared schema. The first step in the extrac-
tion process is to create a functional dependency (FD) graph
from the objects. The nodes in a dependency graph repre-

sent attributes and an edge from attribute A to attribute
B denotes that a functional dependency A → B approx-
imately holds. The objects are first flattened, discarding
nesting structure and decomposing nested arrays, resulting
in a single, very wide and very sparse relation. The extrac-
tor creates a FD graph for this relation using a fuzzy FD
detection algorithm [19], originally proposed by Ilyas et. al.,
that keeps it resilient to minor data errors. Any subtree of
this graph can serve as a relation, with the root of the tree
being the relation’s key (since it implies all attributes in this
subtree). At this point, the original, deterministic DiScala
extractor heuristically selects one set of relations upfront to
use as a final target schema.

In a second pass, the extractor attempts to establish cor-
relations between the domains of pairs of attributes. Re-
lations with keys drawn from overlapping domains become
candidates for being merged together. Once two potentially
overlapping relations are discovered, the DiScala extractor
uses constraints given by FDs to identify potential mappings
between the relation attributes.

6.2 Non-Deterministic Extraction
The DiScala extractor makes three heuristic decisions: (1)

Which relations to define from the FD graph, (2) Which
relations to merge together, and (3) How to combine the
schemas of merged relations. In an ASD, such heuristics are
expected to serve only as a rough, first draft of the schema,
and not as a final, correct representation of the data. Errors
in the first of these heuristics appear in the visible schema,
and as discussed in Section 2 are easy to detect and resolve.
The remaining heuristics can cause data errors that are not
visible until the user begins to issue queries. As a result, the
primary focus of our proof of concept is on the latter two
heuristics.

Concretely, our prototype ASD generalizes the DiScala
extractor by providing: (1) Provenance services, allowing
users to quickly assess the impact of the extractor’s heuris-
tics on query results, (2) Sensitivity analysis, allowing users
to evaluate the magnitude of that impact, and (3) Easy
feedback, allowing users to easily repair mistakes in the ex-
tractor’s heuristics. We leverage a modular data curation
system called Mimir [29, 34, 35] that encodes heuristic de-
cisions through a generalization [22] of a common encoding
of ambiguous and incomplete data called C-Tables [16, 20].
A relation in Mimir may include placeholders, or variables
that stand in for heuristic choices. During normal query
evaluation, variables are replaced according to the heuristic.
However, the terms themselves allow the use of program
analysis as a form of provenance, making it possible to com-
municate the presence and magnitude of heuristic ambigu-
ity in query results, and also allow users to easily override
heuristic choices.

Example 5. Consider the task of mapping a source re-
lation R(A,B) to a target relation R′(C). Mimir’s schema
matcher uses a query of the form:

SELECT CASE {C}
WHEN ’A’ THEN A
WHEN ’B’ THEN B
ELSE NULL

END AS C
FROM R

where {C} denotes a variable with domain {’A’, ’B’, NULL}

that selects between the possible input columns, or declares

relation 3: ‘retweet’relation 2: ‘reply’

σ{reply?}

πreply_id, reply_pic, …πid, pic, …

Source JSON Object

σ{retweet?}

πretweet_id, retweet_pic, …

 ⨄
relation 1: ‘base tweet’

synthesized workspace relation

πid : reply_id,
pic : CASE {pic} WHEN …

πid : retweet_id,
pic : CASE {pic} WHEN …

Figure 3: Structure of an extracted relation’s merged view

that there is no match.1 The resulting C-Table includes a
labeled null for each output row that can take the values of
R.A, R.B, or NULL, depending on how the model assigns vari-
able values. Consider this example instance:

R A B
1 2
3 4

R’ C
{C}=‘A’ ? 1 : ({C}=‘B’ ? 2 : NULL)
{C}=‘A’ ? 3 : ({C}=‘B’ ? 4 : NULL)

Conceptually, every value of R′.C is expressed as deferred
computation (a future). A valuation for {C} allows R′ to be
resolved into a classical relation. Conversely, program anal-
ysis on the future links each value of R′.C, as well as any
derived values back to the choice of how to populate C.

Heuristic data transformations, or lenses, in Mimir consist
of two components. First, the lens defines a view query that
serves as a proxy for the transformed data with variables
standing in for deferred heuristic choices. Second, a model
component abstractly encodes a joint probability distribu-
tion for each variable through two operations: (1) Compute
the most likely value of the variable, and (2) Draw a ran-
dom sample from the distribution. Additionally, the model
is required to provide a human-readable explanation of the
ambiguity that the variable captures.

For this proof of concept we adopt an interaction model
where the ASD dynamically synthesizes workspace relations
by extending one extracted relation (the primary) with data
from extracted relations containing similar data (the secon-
daries). Figure 3 illustrates the structure of one such view
query: The primary and all possible secondaries are initial-
ized by a projection on the source data. A single-variable
selection predicate (i.e., {relation?}) reduces the set of sec-
ondaries included in the view. Second, a schema matching
projection as illustrated in Example 5 adapts the schema of
each secondary to that of the primary.

Our adapted DiScala extractor interfaces with this struc-
ture by providing models for relation- and schema-matching,
respectively. We refer the reader to [12] for the details of
how the extractor computes relation and attribute pairing
strength. The best-guess operations for both models use
the native DiScala selection heuristics, while samples are
generated and weighted according to the pairing strength
computed by the extractor. By embedding the DiScala ex-
tractor as a lens, we are able to leverage Mimir’s program
analysis capabilities to provide feedback. When a lens is

1Currently, the schema matcher assumes that one target
attribute can only be matched against one source attribute.

Time
Dataset Precompute ASD Classic

TwitterM 214s (1.34) 1.26s (0.06) 0.31s (0.04)
TwitterW 625s (36.9) 1.49s (0.05) 0.28s (0.0012)

Figure 4: Overhead of the provenance-aware extractor (aver-
age of the trail runs, standard deviations are in parenthesis)

queried, Mimir highlights result cells and rows that are am-
biguous [23]. On-request, Mimir constructs human-readable
explanations of why they are ambiguous, as well as statis-
tical metrics that capture the magnitude of the potential
result error. Crucially, this added functionality requires
only lightweight instrumentation and compile-time query
rewrites [29].

6.3 Evaluation
Mimir and the prototype ASD are implemented in Scala

2.10.5 being run on the 64-bit Java HotSpot VM v1.8-b132.
Mimir was used with SQLite as a backend. Tests were run
multi-threaded on a 12x2.5 GHz Core Intel Xeon running
Ubuntu 16.04.1 LTS. The primary goal of our experiments
is to evaluate the overhead of our provenance-instrumented
implementation of the DiScala extractor compared to the be-
havior of the classical extractor. We used a dataset, Twit-
terM consisting of 200 columns and TwitterW consisting
of 400 columns of twitter JSON data. The extractor was
run on 100,000 rows taken from Twitter’s Firehose. Fig-
ure 4 shows the performance of the extractor. We show pre-
processing time, the time necessary to compile and evaluate
SELECT * FROM workspace_relation, and the same query
against a table containing the output of the classical DiS-
cala extractor. Note that both these queries return the same
set of results, but the former is instrumented, allowing it to
provide provenance and feedback capabilities. Runtime for
the instrumented extractor is a factor of 2 larger than the
original, but is dominated by fixed compile-time costs.

7. RELATED WORK
Information extraction and integration have been stud-

ied intensively. Several papers study schema matching [4],
schema mapping [15,17], entity resolution [14,32] and map-
ping XML or JSON data into relational form [12]. Further-
more, there exists extensive work on discovering schemas [7,
33] and ontologies [26] from collections of data. We build
upon this comprehensive body of work and leverage such
techniques in ASDs. With JSON as a simplified semi-struc-
tured data model, data can be stored, indexed and queried
without upfront schema definition. Liu et al. [25] have in-
troduced the idea that a logical schema can be automat-
ically derived from JSON data and be used to material-
ize query-friendly adaptive in-memory structures. Niu et
al. [30] present a version graph model for supporting non-
linear, virtualized version histories for relational. Curino et
al. [9] study how multiple schema versions can co-exist vir-
tually in the context of schema evolution. However, they
have not addressed automatic schema discovery and schema
adaptation based on queries and updates. This paper takes
these ideas one step further by introducing the notion of
adaptive schema databases based on flexible schema man-
agement principles [24] and establishes a practical frame-
work of probabilistic schema inference with user feedback
and provenance tracking.

8. CONCLUSIONS AND FUTURE WORK
We presented our vision for adaptive schema databases

(ASDs), a conceptual framework for querying unstructured
and semi-structured data through iteratively refined, per-
sonalized schemas. We discussed how ASDs can be realized
leveraging probabilistic query processing techniques and by
incorporating extraction and integration into the DBMS. We
outlined data models that allow the physical layout of an
ASD to be adapted in response to workload changes. Finally,
we presented our proof of concept implementation within the
Mimir probabilistic data cleaning system and demonstrated
its feasibility. This paper represents only the first step to-
wards practical ASDs. Fully realizing ASDs will require the
database community to address several challenges:

Discovery. Schemas serve a role in helping users explore
and understand new data by providing an outline of the
available information. In an ASD, in addition to contending
with the set of tables (resp., attributes) that do exist in their
workspace, users must also contend with the set of tables
and attributes that could exist in their workspace. Enabling
discovery [7, 28] will be critical for making ASDs practical.

Materialization. We have illustrated that ASDs can, in
principle, perform well. However, supporting interactive,
large-scale workloads will require a complete re-thinking of
the database’s physical layer. We expect research in this
area to borrow heavily from existing work on adaptive data
structures [18], as well as on more coarse-grained strategies
for workload sharing [10].

Data Synthesis. Populating the space of possible schemas
will also be a challenge. Existing techniques for schema ex-
traction (e.g., [3, 12, 24]) are a start, and we anticipate sub-
stantial opportunities for contribution in this space. How-
ever, these approaches only populate a finite set of relation
and attribute names. Ultimately it would be desirable to
enable synthesis of new tables and attributes from existing
data. New tables might be derived by merging (or filtering)
existing ones according to ontological relationships. For ex-
ample, given Giraffe, Dog, and Cat relations, we can syn-
thesize a new Animal relation. New attributes might be
derived as (probabilistic) transformations of existing data.
This latter challenge is especially relevant for geospatial ap-
plications, where positional information might be expressed
through GPS coordinates, political boundaries (e.g., coun-
ties or zip codes), addresses, street corners, or any of a wide
array of descriptors.

Conflict Response. When an ASD receives an invalid
query, it considers possible schema changes that could re-
pair the query. It is possible that such changes will conflict
with schema decisions made previously. Making arbitrary
changes to the schema is undesirable, as these changes might
break existing workloads. It will be necessary to help the
user see and understand the implications of revising existing
decisions. For example, one response might be versioning or
tentatively branching the schema [10,30]. Another direction
might be to use log analysis strategies that help users assess
the impact of schema revisions.

Ultimately, ASDs aim to provide navigational and organi-
zational benefits of schemas without requiring the high up-
front cost of classical schema design. If realized, ASDs have
the potential to bridge the gap between relational databases

and NoSQL, creating a far more user-friendly data explo-
ration experience than either approach is capable of.

Acknowledgements: This work was supported NPS Award
#N00244-16-1-0022, NSF Award #1640864, and by gifts
from Oracle. Opinions, findings and conclusions expressed
in this material are those of the authors and do not neces-
sarily reflect the views of the National Science Foundation,
the Naval Postgraduate School, or Oracle.

9. REFERENCES
[1] L. Antova, C. Koch, and D. Olteanu. 10(106) worlds

and beyond: Efficient representation and processing of
incomplete information. The VLDB Journal,
18(5):1021–1040, Oct. 2009.

[2] B. Arab, D. Gawlick, V. Krishnaswamy,
V. Radhakrishnan, and B. Glavic. Reenactment for
read-committed snapshot isolation. In CIKM, 2016.

[3] S. Balakrishnan, A. Y. Halevy, B. Harb, H. Lee,
J. Madhavan, A. Rostamizadeh, W. Shen, K. Wilder,
F. Wu, and C. Yu. Applying webtables in practice. In
CIDR. www.cidrdb.org, 2015.

[4] P. A. Bernstein, J. Madhavan, and E. Rahm. Generic
schema matching, ten years later. PVLDB,
4(11):695–701, 2011.

[5] N. Bruno and S. Chaudhuri. Automatic physical
database tuning: A relaxation-based approach. In
SIGMOD, 2005.

[6] P. Buneman, S. Khanna, and W.-C. Tan. On
Propagation of Deletions and Annotations through
Views. In PODS, pages 150–158, 2002.

[7] M. J. Cafarella, D. Suciu, and O. Etzioni. Navigating
extracted data with schema discovery. In WebDB,
2007.

[8] G. Cong, W. Fan, F. Geerts, J. Li, and J. Luo. On the
complexity of view update analysis and its application
to annotation propagation. TKDE, (99):1–1, 2011.

[9] C. Curino, H. J. Moon, A. Deutsch, and C. Zaniolo.
Automating the database schema evolution process.
VLDB Journal, 22(1):73–98, 2013.

[10] C. A. Curino, H. J. Moon, and C. Zaniolo. Graceful
database schema evolution: The prism workbench.
pVLDB, 1(1):761–772, Aug. 2008.

[11] B. Dageville, D. Das, K. Dias, K. Yagoub, M. Zait,
and M. Ziauddin. Automatic sql tuning in oracle 10g.
In VLDB, 2004.

[12] M. DiScala and D. J. Abadi. Automatic generation of
normalized relational schemas from nested key-value
data. In SIGMOD, 2016.

[13] X. L. Dong, E. Gabrilovich, K. Murphy, V. Dang,
W. Horn, C. Lugaresi, S. Sun, and W. Zhang.
Knowledge-based trust: Estimating the
trustworthiness of web sources. pVLDB, 8(9):938–949,
2015.

[14] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate record detection: A survey. TKDE,
19(1):1–16, 2007.

[15] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa.
Data Exchange: Semantics and Query Answering.
TCS, 336(1):89–124, 2005.

[16] T. Green and V. Tannen. Models for incomplete and
probabilistic information. In Current Trends in

Database Technology, pages 278–296. 2006.

[17] A. Y. Halevy. Answering queries using views: A
survey. VLDBJ, 10(4):270–294, 2001.

[18] S. Idreos, M. L. Kersten, and S. Manegold.
Self-organizing tuple reconstruction in column-stores.
In SIGMOD, 2009.

[19] I. F. Ilyas, V. Markl, P. Haas, P. Brown, and
A. Aboulnaga. Cords: Automatic discovery of
correlations and soft functional dependencies. In
SIGMOD, 2004.

[20] T. Imieliński and W. Lipski, Jr. Incomplete
information in relational databases. J. ACM,
31(4):761–791, Sept. 1984.

[21] S. R. Jeffery, M. J. Franklin, and A. Y. Halevy.
Pay-as-you-go user feedback for dataspace systems. In
SIGMOD, 2008.

[22] O. Kennedy and C. Koch. PIP: A database system for
great and small expectations. In ICDE, 2010.

[23] P. Kumari, S. Achmiz, and O. Kennedy.
Communicating data quality in on-demand curation.
In QDB, 2016.

[24] Z. H. Liu and D. Gawlick. Management of flexible
schema data in rdbmss-opportunities and limitations
for nosql-. In CIDR, 2015.

[25] Z. H. Liu, B. Hammerschmidt, D. McMahon, Y. Liu,
and H. J. Chang. Closing the functional and
performance gap between SQL and NoSQL. In
SIGMOD, 2016.

[26] A. Maedche and S. Staab. Learning ontologies for the
semantic web. In ICSW, 2001.

[27] H. Mistry, P. Roy, S. Sudarshan, and
K. Ramamritham. Materialized view selection and
maintenance using multi-query optimization.
SIGMOD Rec., 30(2):307–318, May 2001.

[28] A. Nandi and H. V. Jagadish. Assisted querying using
instant-response interfaces. In SIGMOD, 2007.

[29] A. Nandi, Y. Yang, O. Kennedy, B. Glavic, R. Fehling,
Z. H. Liu, and D. Gawlick. Mimir: Bringing ctables
into practice. Technical report, The ArXiv, 2016.

[30] X. Niu, B. Arab, D. Gawlick, Z. H. Liu,
V. Krishnaswamy, O. Kennedy, and B. Glavic.
Provenance-aware versioned dataworkspaces. In TaPP,
2016.

[31] D. Suciu, D. Olteanu, C. Ré, and C. Koch.
Probabilistic databases. Synthesis Lectures on Data
Management, 3(2):1–180, 2011.

[32] J. Wang, T. Kraska, M. J. Franklin, and J. Feng.
Crowder: Crowdsourcing entity resolution. PVLDB,
5(11):1483–1494, 2012.

[33] K. Wang and H. Liu. Schema discovery for
semistructured data. In KDD, volume 97, pages
271–274, 1997.

[34] Y. Yang. On-demand query result cleaning. In VLDB
PhD Workshop, 2014.

[35] Y. Yang, N. Meneghetti, R. Fehling, Z. H. Liu, and
O. Kennedy. Lenses: An on-demand approach to etl.
VLDB, 8(12):1578–1589, 2015.

[36] D. C. Zilio, J. Rao, S. Lightstone, G. Lohman,
A. Storm, C. Garcia-Arellano, and S. Fadden. Db2
design advisor: Integrated automatic physical
database design. In VLDB, 2004.

	Introduction
	Extraction and Discovery
	Adaptive, Personalized Schemas
	Explanations and Feedback
	Adaptive Organization
	Materializing Personalized Schemas
	Shared Materializations

	Proof of Concept
	Deterministic Extraction
	Non-Deterministic Extraction
	Evaluation

	Related Work
	Conclusions and Future Work
	References

